skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Glaser, Evan_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hydrogen in β-Ga2O3 passivates shallow impurities and deep-level defects and can have a strong effect on conductivity. More than a dozen O–D vibrational lines have been reported for β-Ga2O3 treated with the heavy isotope of hydrogen, deuterium. To explain the large number of O–D centers that have been observed, the involvement of additional nearby defects and impurities has been proposed. A few O–H centers have been associated with specific impurities that were introduced intentionally during crystal growth. However, definitive assignments of O–H and O–D vibrational lines associated with important adventitious impurities, such as Si and Fe, have been difficult. A set of well-characterized Si-doped β-Ga2O3 epitaxial layers with different layer thicknesses has been deuterated and investigated by vibrational spectroscopy to provide new evidence for the assignment of a line at 2577 cm−1 to an OD–Si complex. The vibrational properties of several of the reported OD-impurity complexes are consistent with the existence of a family of defects with a VGa1ic−D center at their core that is perturbed by a nearby impurity. 
    more » « less
  2. β-Ga2O3 is an ultrawide bandgap semiconductor that is attracting much attention for applications in next-generation high-power, deep UV, and extreme-environment devices. Hydrogen impurities have been found to have a strong effect on the electrical properties of β-Ga2O3. This Tutorial is a survey of what has been learned about O–H centers in β-Ga2O3 from their vibrational properties. More than a dozen, O–H centers have been discovered by infrared absorption spectroscopy. Theory predicts defect structures with H trapped at split configurations of a Ga(1) vacancy that are consistent with the isotope and polarization dependence of the O–H vibrational spectra that have been measured by experiment. Furthermore, O–H centers in β-Ga2O3 have been found to evolve upon thermal annealing, giving defect reactions that modify conductivity. While much progress has been made toward understanding the microscopic properties and reactions of O–H centers in β-Ga2O3, many questions are discussed that remain unanswered. A goal of this Tutorial is to inspire future research that might solve these puzzles. 
    more » « less